Wed-02-11-2011, 17:13 PM
Research Summary:
The objective of the Commercial Protein Crystal Growth - High Density (CPCG-H) experiment was to produce large, well-ordered crystals of several different macromolecules for use in X-ray diffraction studies.
This investigation verified the performance of the new hardware assembly and continued to develop technology for macromolecular crystal growth experiments in microgravity.
The hardware consists of 4 independently operated trays each holding 42 growth cell assemblies of six experiments for a total of 1008 experiments. The growth cell assembly utilizes a user-friendly vapour diffusion chamber that mimics typical ground-based Linbro 24-well plates.
Description:
The Commercial Protein Crystal Growth - High Density (CPCG-H) is protein crystal growth experiment flight hardware. During ISS Expeditions 2 and 4, CPCG-H was outfitted with High-Density Protein Crystal Growth (HDPCG) hardware. HDPCG was a vapour-diffusion facility that could process as many as 1008 individual protein samples. The entire HDPCG assembly had four independent trays that held 252 individual protein crystal growth experiments on each. The chambers had a protein reservoir, a precipitant reservoir, and an optically-clear access cap. The chambers were designed to reduce sedimentation problems and to produce highly uniform, single crystals. The trays can be removed and transferred to an awaiting camera system, Commercial Protein Crystal Growth - Video (CPCG-V), for observation while on the International Space Station (ISS). The individual experiments are grouped in sets of six and can be harvested one at a time.
The CPCG-H flight system can fly a typical Space Shuttle sortie mission or can be transferred to an ISS Expedite the Processing of Experiments to Space Station (EXPRESS) Rack for an extended mission. The HDPCG growth cell assemblies can provide up to three levels of containment if needed for safety while providing in-process crystal observations through optically-clear polycarbonate windows. CPCG-H is a single Middeck Locker Equivalent which weighs 32.7 kg.
Proteins provide the building blocks of our bodies. Some proteins make it possible for red blood cells to carry oxygen while other proteins help transmit nerve impulses that allow us to see, hear, smell, and touch. Still other proteins play crucial roles in causing diseases. Pharmaceutical companies may be able to develop new or improved drugs to fight those diseases once the exact structures of the proteins are known.
The goal of the Commercial Protein Crystal Growth - High-density (CPCG-H) is to grow high-quality crystals of selected proteins so that their molecular structures can be studied. On Earth, gravity often has a negative impact on growing protein crystals. In microgravity, however, gravitational disturbances are removed, thus allowing some crystals to grow in a more regular and perfect form.
The primary proteins involved in the testing of the CPCG-H hardware during ISS Expeditions 2 and 4 were mistletoe lectin-I (ML-I), Thermus flavus 5S RNA, brefeldin A-ADP ribosylated substrate (BARS), and a triple mutant myoglobin (Mb-YQR). ML-I is a ribosome inactivating protein that can stop protein biosynthesis (creation of proteins) in cells, and is also a major component of drugs used in the treatment of cancer. Although the study of Thermus flavus 5S RNA has been ongoing for well over 30 years, the exact function of this protein remains obscure. Scientists believe that the crystallization of different domains of this protein may reveal functional properties. BARS is an enzyme involved in membrane fission, catalysing the formation of phosphatidic acid by transfer. Mb-YQR was studied to assess the functional role of packing defects in proteins. The understanding of these protein structures will provide valuable insight into the role of these proteins for applications in the pharmaceutical industry.
Space Applications:
The crystals grown in microgravity are able to grow larger and more organized than those grown on Earth. The results from this investigation may further human space exploration efforts by creating technological and biological advancements as a direct result from this research.
Earth Applications:
This investigation is a validation of the Commercial Protein Crystal Growth-High Density (CPCG-H) facility. The CPCG-H will be used to grow large protein crystals of medical importance in an undisturbed, microgravity environment. High-Density crystals were grown to study the effectiveness of the CPCG-H in producing high-quality crystals that enhance post flight, Earth-based analysis.
Knowledge of precise three-dimensional molecular structure is a key component in biotechnology fields such as protein engineering and pharmacology. In order to obtain accurate data on the three-dimensional structure of protein crystals or other macromolecules, scientists employ a process called X-ray crystallography. Crystallographers construct computer models that reveal the complex structures of a protein molecule. In order to generate an accurate computer model, crystallographers must first crystallize the protein and analyse the resulting crystals by a process called X-ray diffraction. Precise measurements of thousands of diffracted intensities from each crystal help scientists map the probable positions of the atoms within each protein molecule. This complex process requires several months to several years to complete.
The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the crystals. Thus, the structures of many important proteins remain a mystery simply because researchers are unable to obtain crystals of high enough quality or large enough size. Generally, crystals must have dimensions of approximately 0.3 mm to 1.00 mm, and the protein molecules must be arranged in an orderly, repeating pattern. Consequently, the growth of high quality macromolecular crystals for diffraction analyses has been of primary importance for protein engineers, biochemists, and pharmacologists.
On Earth, the crystallization process is hindered by forces of sedimentation and convection since the molecules in the crystal solution are not of uniform size and weight. This leads to many crystals of irregular shape and small size that are unusable. However, the microgravity environment aboard the ISS is relatively free from the effects of sedimentation and convection and provides an exceptional environment for crystal growth.
To understand the true function of a protein, the structure must be determined. The model of the structure must be accurate to allow scientists to create compounds that bind to the protein. The understanding of the protein structure is of major importance with complex proteins (proteins that have significant folding). The three-dimensional structure of the triple mutant protein Mb-YQR was solved by growing the protein on ISS during Expeditions 2 and 4. Following return to Earth, three-dimensional models were created of the Mb-YQR proteins grown in space using X-ray crystallography techniques (Miele et al. 2004).
Structural studies of microgravity-grown crystals have provided important information for the development of new drugs. For example, previous studies conducted using crystals grown on shuttle flights have been used in the design of inhibitors, which may serve as broad-spectrum antibiotics. The CPCG-H payload offers a great increase in the amount of space available for protein crystal growth, enhancing the space station's research capabilities and commercial potential.
Source: nasa.gov
The objective of the Commercial Protein Crystal Growth - High Density (CPCG-H) experiment was to produce large, well-ordered crystals of several different macromolecules for use in X-ray diffraction studies.
This investigation verified the performance of the new hardware assembly and continued to develop technology for macromolecular crystal growth experiments in microgravity.
The hardware consists of 4 independently operated trays each holding 42 growth cell assemblies of six experiments for a total of 1008 experiments. The growth cell assembly utilizes a user-friendly vapour diffusion chamber that mimics typical ground-based Linbro 24-well plates.
Description:
The Commercial Protein Crystal Growth - High Density (CPCG-H) is protein crystal growth experiment flight hardware. During ISS Expeditions 2 and 4, CPCG-H was outfitted with High-Density Protein Crystal Growth (HDPCG) hardware. HDPCG was a vapour-diffusion facility that could process as many as 1008 individual protein samples. The entire HDPCG assembly had four independent trays that held 252 individual protein crystal growth experiments on each. The chambers had a protein reservoir, a precipitant reservoir, and an optically-clear access cap. The chambers were designed to reduce sedimentation problems and to produce highly uniform, single crystals. The trays can be removed and transferred to an awaiting camera system, Commercial Protein Crystal Growth - Video (CPCG-V), for observation while on the International Space Station (ISS). The individual experiments are grouped in sets of six and can be harvested one at a time.
The CPCG-H flight system can fly a typical Space Shuttle sortie mission or can be transferred to an ISS Expedite the Processing of Experiments to Space Station (EXPRESS) Rack for an extended mission. The HDPCG growth cell assemblies can provide up to three levels of containment if needed for safety while providing in-process crystal observations through optically-clear polycarbonate windows. CPCG-H is a single Middeck Locker Equivalent which weighs 32.7 kg.
Proteins provide the building blocks of our bodies. Some proteins make it possible for red blood cells to carry oxygen while other proteins help transmit nerve impulses that allow us to see, hear, smell, and touch. Still other proteins play crucial roles in causing diseases. Pharmaceutical companies may be able to develop new or improved drugs to fight those diseases once the exact structures of the proteins are known.
The goal of the Commercial Protein Crystal Growth - High-density (CPCG-H) is to grow high-quality crystals of selected proteins so that their molecular structures can be studied. On Earth, gravity often has a negative impact on growing protein crystals. In microgravity, however, gravitational disturbances are removed, thus allowing some crystals to grow in a more regular and perfect form.
The primary proteins involved in the testing of the CPCG-H hardware during ISS Expeditions 2 and 4 were mistletoe lectin-I (ML-I), Thermus flavus 5S RNA, brefeldin A-ADP ribosylated substrate (BARS), and a triple mutant myoglobin (Mb-YQR). ML-I is a ribosome inactivating protein that can stop protein biosynthesis (creation of proteins) in cells, and is also a major component of drugs used in the treatment of cancer. Although the study of Thermus flavus 5S RNA has been ongoing for well over 30 years, the exact function of this protein remains obscure. Scientists believe that the crystallization of different domains of this protein may reveal functional properties. BARS is an enzyme involved in membrane fission, catalysing the formation of phosphatidic acid by transfer. Mb-YQR was studied to assess the functional role of packing defects in proteins. The understanding of these protein structures will provide valuable insight into the role of these proteins for applications in the pharmaceutical industry.
Space Applications:
The crystals grown in microgravity are able to grow larger and more organized than those grown on Earth. The results from this investigation may further human space exploration efforts by creating technological and biological advancements as a direct result from this research.
Earth Applications:
This investigation is a validation of the Commercial Protein Crystal Growth-High Density (CPCG-H) facility. The CPCG-H will be used to grow large protein crystals of medical importance in an undisturbed, microgravity environment. High-Density crystals were grown to study the effectiveness of the CPCG-H in producing high-quality crystals that enhance post flight, Earth-based analysis.
Knowledge of precise three-dimensional molecular structure is a key component in biotechnology fields such as protein engineering and pharmacology. In order to obtain accurate data on the three-dimensional structure of protein crystals or other macromolecules, scientists employ a process called X-ray crystallography. Crystallographers construct computer models that reveal the complex structures of a protein molecule. In order to generate an accurate computer model, crystallographers must first crystallize the protein and analyse the resulting crystals by a process called X-ray diffraction. Precise measurements of thousands of diffracted intensities from each crystal help scientists map the probable positions of the atoms within each protein molecule. This complex process requires several months to several years to complete.
The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the crystals. Thus, the structures of many important proteins remain a mystery simply because researchers are unable to obtain crystals of high enough quality or large enough size. Generally, crystals must have dimensions of approximately 0.3 mm to 1.00 mm, and the protein molecules must be arranged in an orderly, repeating pattern. Consequently, the growth of high quality macromolecular crystals for diffraction analyses has been of primary importance for protein engineers, biochemists, and pharmacologists.
On Earth, the crystallization process is hindered by forces of sedimentation and convection since the molecules in the crystal solution are not of uniform size and weight. This leads to many crystals of irregular shape and small size that are unusable. However, the microgravity environment aboard the ISS is relatively free from the effects of sedimentation and convection and provides an exceptional environment for crystal growth.
To understand the true function of a protein, the structure must be determined. The model of the structure must be accurate to allow scientists to create compounds that bind to the protein. The understanding of the protein structure is of major importance with complex proteins (proteins that have significant folding). The three-dimensional structure of the triple mutant protein Mb-YQR was solved by growing the protein on ISS during Expeditions 2 and 4. Following return to Earth, three-dimensional models were created of the Mb-YQR proteins grown in space using X-ray crystallography techniques (Miele et al. 2004).
Structural studies of microgravity-grown crystals have provided important information for the development of new drugs. For example, previous studies conducted using crystals grown on shuttle flights have been used in the design of inhibitors, which may serve as broad-spectrum antibiotics. The CPCG-H payload offers a great increase in the amount of space available for protein crystal growth, enhancing the space station's research capabilities and commercial potential.
Source: nasa.gov